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The dependence of the electromechanicai coupling coefficient (EMCC) on the size and position of the electrodes on the faces 
of the bodies is investigated using the examples of a circular piezoceramic plate and a cylindrical piezoceramic shell executing 
harmonic oscillations. It is shown that the EMCC depends in a complex way on the vibration frequency and the boundary conditions 
at the edges. For the piezoelectric elements considered, the position and size of the electrodes for which the EMCC is considerably 
greater than the EMCC for the same elements with the faces completely covered by the electrodes are obtained. © 2001 Elsevier 
Science Ltd. All rights reserved. 

The efficiency of energy conversion is the most important feature of the operation of a piezoelectric 
element. This characteristic is commonly referred to as the electromechanical coupling coefficient 
(EMCC), but in the modem theory of electroelasticity there is still no general agreement on how to 
calculate it. This paper is an extension of our previous research [1-3] on the EMCC where three different 
ways of calculating the EMCC, using the examples of beams, plates and cylindrical shells, were analysed. 

1. METHODS OF DETERMINING THE EMCC 

The most popular formula for calculating the EMCC, which we will denote by ks, is 

k~- 2 - U, .  I(U~Ua) (1.1) 
where Ue, Ua and Um are the elastic, electric and interaction energy, respectively. 

The formula is widely used to determine the piezoelectric characteristics of a piezoelectric material, 
traditionally denoted by k33, k31 . . . . .  They are found by solving the static problems for electroelastic 
bodies of the simplest geometry, and these solutions are independent of the coordinates of points of 
the body and of time. Henceforth we shall agree to call these elctroelastic states uniform states, and 
the EMCC ks calculated from Eq. (1.1) will be called the static EMCC. 

As a rule the electroelastic state of an actual piezoelectric element is not uniform. For non-uniform 
electroelastic states the EMCC depends on many parameters, such as the vibration frequency, the 
geometry of the piezoelectric element and its electrodes, and the mechanical and electrical boundary 
conditions. The values of the EMCC for actual piezoelectric elements are often less than the tabulated 
values of ks for uniform states. However some researchers use formula (1.1) for non-uniform 
electroelastic states, for which it is unsuitable [6,7]. 

Mason's formula [4] is often used to determine the EMCC in dynamic problems for oscillations at 
frequencies near resonance. We will call the EMCC calculated from this formula the dynamic EMCC 
and denote it by kd: 

2 = (co  - co )/coo (1.2) 

where % is the resonance frequency of the vibrations and co a is the corresponding anti-resonance 
frequency of the vibrations. 
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The third formula for the EMCC is called the energy formula. We shall call the EMCC calculated 
from this formula the energy EMCC and denote it by Ke: 

k~ = (U (d) - U~Sh)) / U (d) (1.3) 

where U (d) is the internal energy of the piezoelectric element with disconnected electrodes and U (sh) is 
the internal energy for the element with short-circuited electrodes. To calculate ke we first solve the 
initial problem and then calculate the internal energy of the piezoelectric element with disconnected 
electrodes U (d) and the internal energy for the element with short-circuited electrodes, assuming that 
the strains are known. When calculating U (d) the potential difference on the disconnected electrodes 
are found from the integral condition at the disconnected electrodes: 

I o~d)ds=O (1.4) 
S 

where s is the surface of the electrode, D (d) isthe component of the electric induction vector normal 
to the electrode surface, and the dot above D ~  ) denotes a derivative with respect to time. For the 
conditions at short-circuited electrodes the electric potential ~,(sh) must be zero: 

~sh~ = 0 (1.5) 

The energy method of determining the EMCC was discussed previously in [8-11]. The method was 
first used [10, 11] to calculate the EMCC in one-dimensional problems for a rod with thickness 
polarization with the side surfaces partially covered by electrodes and for a rod with longitudinal 
polarization and recessed electrodes. This method was used in [1] to investigate the EMCC of a circular 
piezoceramic plate and a cylindrical piezoceramic shell. For typical industrial piezoelectric elements 
the above three methods of determining the EMCC were analysed in [2]. The result of the analysis 
confirmed the previous conclusion regarding the area of application of formulae (1.1)-(1.3). The EMCC 
of a three-layer beam was analysed in [3] by the energy method. 

2. ANALYSIS OF THE EMCC OF A C I R C U L A R  P I E Z O C E R A M I C  PLATE 

Let us consider the harmonic vibrations of a circular plate of radius R and thickness 2h with thickness 
polarization. A pair of electrodes, symmetrical about the middle plane of the plate, either totally or 
partially covers the plate faces. The plate executes forced vibrations due to the electric potential applied 
to the electrodes. It has been shown [1] that the equations of state have a different form for a plate 
with electrode-covered faces and for a plate without electrodes. 

Since the vibrations are harmonic, all the equations will be written for the amplitude values of the 
desired quantities. 

Using polar coordinates r, tO, the electroelasticity relations for a plate with its faces completely covered 
by electrodes, on which the electrical potential is specified, can be written as 

2h e +VE~)  + 2d31 
r (  : s (I-v2) (e' 

• = 2h v2) (e~ +ve[)'~ 2d3j V 

+ (r,' + r,g). E; =__v 
h zn h 

(2.1) 

The electroelasticity relations for a piezoelectric plate without electrodes on the faces have the form 

n n T;" = 2hB(e.~ + oe.~), T~ = 2hB(~.~ + CY~.~ ) 

e; + r;) 
ZtlE33 

(2.2) 

where 
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2 - ( I - v ) k  2 2v+( I -v )k~  

8=2s (l_v2)0_,2), o= 2_o_v)k2 
d 2 E 2 2k2, k2,_ 3, , s,2 

7 ,  - - T z v -  v :  
SI IE33 

The superscripts e and n denote quantities for a plate with electrode-covered faces and without 
electrodes on the faces, respectively. 

The equilibrium equation 

dr, o r ,°-  r;  
- -  + - -  + 2 h p o ) 2 u  a = 0 (2.3) 
dr r 

and the strain-displacement formulae 

a d u a  a ua  
= - -  (2.4) El = - -~ - r  ' E~ r 

are independent of the electrical conditions. They are the same as those in the theory of elastic plates. 
In Eqs (2.3)--(2.4) and henceforth the superscript a will be replaced by e for a plate with electrode- 
covered faces and by n for a plate without electrodes. 

In the above equations, 2V is the applied electrical potential difference, T~, Tg, e~, and Eg_ are the 
forces and components of the strain tensor in the radial and angular direction, respectively, E~ and D~ 
are the components of the electric field vector and the electric induction vector normal to the face of 

E "  E the plate, Sll, s12 are the elastic compliances for a constant electric field, d31 is the piezoelectric constant, 
and e3r3 is the permittivity for constant field strengths. 

Substituting the first and second relations of (2.1) together with (2.2) and (2.4) into Eq. (2.3), we 
obtain the equation in terms of the displacement u a 

r 2 d 2 u  a d u  a r 
"-d-~--r 2 + r  dr +[(~'i~)2-1]u° =0'  ~ = R '  i=1,2 (2.5) 

~.] = pco2s~R2(I - v2), ~.22 = po32BR 2 

where ~.1 and 12 are the dimensionless frequencies for a plate with electrodes on the faces (a = e) and 
for a plate without electrodes (a = n), respectively. 

Problem 1. The faces of the circular plate are completely covered by the electrodes. 
The solution of this problem is well known. It is written out here in order to analyse the EMCC. 

Since the solution at the centre of the plate must be bounded, it has the form 

u" = CiJ~(tl~) (2.6) 

We find the constant C] from the condition at the edge of the plate. 
At the free edge of the plate the radial force is zero 

r = R :  T [ = 0  (2.7) 

The constant C1, found from condition (2.7), is 

C I = 
(I + v)Rd3t V 

t i J 0 ( ~ , ) - ( I -  v)J,(kl) h 
(2.8) 

The amplitude of the electric current can be found as follows: 

[ 2 ] 
V kp CJJl(ll) l = -it°ID~e)dSs = it°R2Er3 ( I - k  2) h Rd3! 

According to Eq. (2.8) the equation for the resonance frequencies takes the form 
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~ l J o O ' ~ ) -  (I - v ) J  I (k l  ) = 0 

The anti-resonance dimensionless frequencies, for which the current passing through the electrodes 
vanishes, are found from the equation 

k2 
~t Jo(~.l ) - I - v - (! + v ) ~ q J  I (7~ I ) = 0 

1-kv ] 

The first four dimensionless resonance frequencies for a circular plate made of PZT-5 piezoelectric 
ceramics are 2.08, 5.40, 8.58 and 11.34, and the corresponding antiresonance frequencies are 2.46, 5.54, 
8.67 and 11.80. The values of the EMCC kd for the resonance and anti-resonance frequencies, calculated 
from Eq. (1.2), are 0.282, 0.051, 0.021 and 0.011 [1]. 

Using the solution obtained for a plate we calculate the EMCC ks from formula (1.1), where 

u .  + r : ) m s ,  u. = 2h ; S( r) es 
$ 

SlEI f rtTe,~2 U, = - - J t ~  I '  +(T~) 2-2VTleT;I ds 
4h s 

The calculation of  the EMCC ke for the circular plate was described in detail previously in [1]. 
The energies U (d) and U (sh) are calculated from the following formulae 

u + + 2he  )O "))as -tO ~tp 
s 

U (sh) _- Ji" (T(Sh)E( s h ) l  I -t- ltpn'(sh)-(sh)Ecp )as'J 
$ 

where E~ a) is determined from condition (1.4), which in this case, takes the form 

2d31 (12- k2 ) E~ d) = I (el + e,p )ds (2.9) 
kp s 

The formula for U (d) can be simplified, since E[ d) is constant and the integral of D~ d) equals zero 
according to Eq. (1.4). As a result we obtain 

U(a) = f (Tlta)l~Id) +/~(a)~(d)..)as 
$ 

The results of a calculation of the EMCC as a function of the dimensionless frequency are shown in 
Fig. 1. (Here and henceforth the calculations are carried out for PZT-5 piezoceramics) The thin line 
represents ks, the thick line corresponds to ke, and the open circles are for kd. Since kd is calculated 
using the resonance frequency ~'r and the anti-resonance frequency ~-a we will assume that Eq. (1.2) 
gives the value of the EMCC k d at a frequency equal to half the sum of resonance and anti-resonance 
frequencies. It can be seen from Fig. 1 that the values of kd correspond to the paints of intersection of 
lines of the ks and k e. But the ks line does not seem to be realistic, since its maxima hardly decrease as 
the vibration frequency increases. 

V' 
0 5 10 ~-I 

Fig. 1 
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A significant difference between ke, kd, and ks is observed for a plate with a rigidly clamped edge. At 
the rigidly clamped edge, the displacement is equal to zero 

r= R: ue=O (2.10) 

and the solution of the problem has the following form 

2d31 V (2.11) e e __0, Tie =T~ sE(l-V) U e--O, E I =Etp = 

Using formulae (1.1)-(1.3) we obtain the following values of the EMCC for a plate with a rigidly clamped 
edge 

ke =ka = 0, k, = kp (2.12) 

A plate with a rigidly clamped edge under the action of a specified electrical load is not deformed. 
This means the electrical energy is not converted into mechanical energy. Obviously, in this case the 
values of ke and kd are correct and the values of ks are incorrect. 

Note that formula (1.3) for ke is more general than formula (1.2) for kd: the formula for kd holds 
only at certain vibration frequencies near resonance, whereas the formula for ke holds for any static 
and dynamic problems. 

Problem 2. The electrodes cover part of the plate surface 0 ~< r ~< R0 < R. The solution for the central 
part of the plate covered by the electrodes has the form (2.6). The solution for the part of the plate 
without electrodes may be written as 

u" -- C2J, (~2~) + C3 ~ (X2~) (2.13) 

where Cz and C3 are arbitrary constants. 
Three constants Ca, C2 and C3 are found from conditions for the radial displacements and the 

forces at the line r = R0 between the electrode-covered area and the area without electrodes to be 
equal 

r = & :  r(=rl", . ' =u"  

and from condition (2.7), if the edge of the plate is free, or (2.10) if the edge is rigidly clamped. 
After some rearrangement, we obtain, for a plate with a free edge, the following system of equations 

for determining Ca, C2 and C3 

3 
Y, Cia q = bj, j = 1,2,3 
i=l 

where 

all = Jl(Zq~o), al2 =-Jl(X2~o), al3 =-Yl(~,2~o) 

a22 =-Bs~[X2J°(~'2~°)~. ---~--ol-°J i( L 2~0) / - q 

023---BsE[~,2Yo(~.2~o)-~o YI(K2~o)] 

a3l = 0, 032 = ~,2J0(~,2)- (1 -t~)Jl(~,2) 

a33 = ~'2 Yo (~'2) - (I - t~)Y I (~'2) 

d31 RV, b 3=0,  ~0= R° b I=0 ,  b 2= I - v  h 
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The same formulae as above hold for a plate with a rigidly clamped edge. An exception is the formulae 
for the coefficients a32 and a33, which have the following form 

a32 = Jl(~,2), a33 = Y1(3.2) 

The EMCC ke is calculated from the second formula of (1.3), in which U (d) and U (sh) are defined as 
follows: 

U (c) = ~(T~(C)En +t,~(c)~,)dsa + ~(TIE] + T~E,)ds 2, (c) = (d), (sh) 
$1 $2 

Here $1 and $2 are the areas of the plate with electrodes and without electrodes, respectively. 
The curves shown in Figs 2-4 relate to a plate with a free edge (the solid curve) and with a rigidly 

clamped edge (the dashed curve). 
The dependence of the EMCC ke on the electrode radius R near the first resonance frequency is 

shown in Fig. 2. We see from this figure that the EMCC reaches a maximum when R0 = 0.85R for a 
plate with the free edge, and when R0 = 0.4R for a plate with a rigidly clamped edge. 

Figure 3 shows the first dimensionless resonance frequency 3.1 as a function of  the radius of the 
electrodes. We see from this figure that the first resonance frequency for a plate without electrodes 
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made from PZT-5 with a free edge is about 20% greater than that for the same plate completely covered 
with electrodes. 

Problem 3. The electrodes on each of the plate faces have the form of a ring 0 < R0 ~< r ~< R] < R. 
As noted above we use different formulae for the displacements of the plate areas covered by 

electrodes and these parts without electrodes. We have 

O~<r~<Ro: un = CiJl()~2~) 

Ro < ~ r ~  RI : u~=C2JI (~ . I~ )+  C3YI(2LI~) 

R I ~< r ~  < R :  u n = C'4JI(L2~)+ CsYI(~.2~) 

for the central part of the plate without electrodes on the faces, for the ring covered with electrodes, 
and for the outer circular area without electrodes, respectively. 

The arbitrary constants C1 . . . . .  C5 in this case can be found by satisfying the conditions at the interfaces 
between the electrode-covered part of the plate and the parts without electrodes and the boundary 
conditions at the plate edge. We consider two forms of boundary conditions: a free edge and a rigidly 
clamped edge. The EMCC ke is calculated in the same way as in Problem 2. 

Figure 4 shows a graph of the EMCC ke against the location and size of the electrodes near the second 
resonance frequency. It can be seen that the EMCC k~ reaches its greatest value for electrodes located 
in the region 0.6R ~< r ~< 0.gR for a plate with a free edge (max ke = 0.413) and in the region 
0.4R ~< r ~< 0.7R for a plate with a rigidly clamped edge (max k~ = 0.348). The values of the EMCC 
for a plate with electrodes completely covering the faces, near the second resonance frequency, are 
0.228 for a plate with a free edge, and zero for a plate with a rigidly clamped edge. A considerable 
increase in the EMCC can be achieved by an appropriate choice of the electrodes. 

Note that a large increase in the EMCC can probably be obtained if a pair of ring electrodes is 
deposited on each face. 

3. ANALYSIS OF THE E M C C  OF A C I R C U L A R  C Y L I N D R I C A L  
P I E Z O C E R A M I C  S H E L L  

A cylindrical shell of radius R and length 2L vibrates when excited by an electric load applied to its 
electrodes. Cylindrical coordinates r, ~, x are used to describe the cylindrical surface r = R, Ix [ ~< L. 
We will use the membrane theory of shells to solve the problem. 

The electroelasticity relations for the forces have the same form as for a plate. They are written in 
the form of Eqs (2.1) and (2.2), where T~, T~ and e~, e~ are the forces and components of the strain 
in the x and q) coordinate directions, respectively. The equilibrium equations and strain-displacement 
formulae in membrane theory can be written in the form 

dTla + 2 h p o 2 u  a = 0, T~' + 2hpto2wa = 0 (3.1) 
dx R 

du a w a 
e~ = ~ - - -  (3 .2)  dx ' Et° = r 

Here u a is the tangential displacement in the x-direction and w a is the deflection of the cylindrical shell. 
Rearranging Eqs (3.1) using the first two equations of (2.1) and Eqs (2.2) and (2.3), we obtain the 

equation in u a 

I d2u" +l.t~u" =0, kti = 2 _ v  2 , ~ ,  i=  1,2 (3.3) 
d~ 2 l - k i 

The deflection w ~ can be expressed in terms of the tangential displacement u a as follows: 

wa V du a +d31 l + v  R V 
= I-~,----- T d~  I-- ' [ -~/h - (3 .4)  
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Here the dimensionless frequencies ~.1 and ~'2 a r e  given by the same formulae as for a plate: ~-1 is 
used for the part of the shell covered with electrodes and ~.2 for the part without electrodes. 

Problem 1. The faces of the shell are completely covered with electrodes. 
The solution of Eq. (3.3) can be written in the form 

u e = CIsinl-q~ (3.5) 

We consider a shell with free edges 

x = L ,  x = - L :  Ti e = 0  (3.6) 

The arbitrary constant C] can be found which satisfies condition (3.6). We have 

1 - Z,~ - v R V, ~0 = L° (3 .7 )  
G = l - ;~ ] -v  2 lalcoslal~o T 

The EMCCs ke, kd, and ks for a cylindrical shell are calculated in the same way as in the case of a 
circular plate. 

The result of a calculation of the EMCC for a shell of length 2L = 2R is presented in Fig. 5. 
The thin line represents ks, the thick line gives ke, and the open circles show kd. The calculations lead 

to the same conclusions as for a circular plate: the values of Rd coincide with the points of intersection 
of the curves ke and ks, but the values of ks do not decrease when the dimensionless frequency increases, 
which is contrary to the physical meaning of the phenomenon. 

We advance one more argument which confirms the correctness of energy formula (1.3). It is seen 
from Figs 1 and 5 that the EMCC ke is zero for some vibration frequencies. The EMCC k2 for these 
frequencies reaches values close to the maxima of the Rs curve. 

Imagine that the structure considered (a plate or a shell) is covered by a piezoelectric layer (for 
example, a layer of PVDF), which we use to measure strains. The faces of this layer are covered with 
electrodes which are electrically insulated from the external electrode of the structure. We assume that 
the layer is so thin, that its influence on the behaviour of the structure is small and can be neglected. 
This means that the layer has the strains and the displacements identical with those of the piezoelectric 
structure. The EMCC ke is zero when (see Eq. (13)) 

U td) = U (~h) (3.8) 

From Eq. (2.9) it follows that equality (3.8) only holds if 

E~ a' =0  (3.9) 

From Ohm's law it follows that in this case 

J(~.j + l~q,)ds = 0 
S 

(3.1o) 

ke 

0.4 

0.2 

h/ 
2 4 6 Xi 

Fig. 5 
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Equation (3.10) also holds for the layer used to measure strains, since it has the same deformation 
as the structure considered. The measured potential difference which arises on the layer electrodes is 
directly proportional to the integral of the sum (el + e~) over the electrode surface. This potential 
difference is equal to zero when the integral of this sum is equal to zero. 

Note that when the output potential difference is equal to zero, at the same time the applied potential 
difference is non-zero. That is, the structure does not convert energy from one form to another at the 
some frequencies for which ke = 0, and formula (1.1) for ks is incorrect for these frequencies and gives 
non-zero values of the EMCC. 

Problem 2. The electrodes cover the central area of the shell Ix l ~ L0 < L. 
Just as in the case of a plate, we will use different constitutive relations (2.1) and (2.2) for the area 

of the shell covered and not covered with electrodes, respectively. 
The solution for the central area of the shell Ix [ ~< L0 < L covered with electrodes is taken in the 

form (3.5). For the area of the shell without electrodes the solution contains two arbitrary constants 
C2 and C3: 

- L < ~ x ~ - L o ,  Lo < ~ x ~ L :  un =C2sin~t2~+C3cosl.t2~ (3.11) 

The three arbitrary constants C1, C 2 and Ca are found which satisfy the contact conditions at the boundary 
between the electrode-covered part of the shell and the part without electrodes 

Ix I = Lo : T I' = T~", u e = u" (3.12) 

and from condition (2.7) at the free edges or (2.10) at the rigidly clamped edges. 
The EMCC ke calculated at the first resonance frequency as a function of the length of the shell area 

L0 (0 ~< L 0 ~< L, L = R), covered by electrodes is plotted in Fig. 6. The EMCC Ice peaks approximately 
at L0 = 0.7R for a shell with free edges and at L0 = 0.3R for a shell with rigidly clamped edges. 

The first resonance frequency of the shell depends on the size of electrodes in the same way as for 
a circular plate (Fig. 3). 

The fact that the resonance frequencies of a piezoelectric cylindrical shell depend on the electrical 
boundary conditions on its faces was observed previously in [12], where the 3D theory with the discrete 
orthogonalization technique was used, and it was shown that the resonance frequencies for a shell with 
electrode-covered faces are much lower than for a shell without electrodes. 

4. C O N C L U S I O N S  

The results of our analysis confirm the following conclusions, reached previously [1-3] when analysing 
the EMCC of other piezoelectric elements: 

1) the energy formula (1.3) for determining the EMCC is universal; it is applicable for any 
piezoelectric structures in the static and dynamic state. 

2) formula (1.1), originally recommended as a general formula, holds only for bodies of the simplest 
geometry whose surfaces are free from mechanical clamping, while the electroelastic state is independent 
of the time and the coordinates; 

3) formula (1.2), commonly used to determine the EMCC at resonance frequencies in actuality gives 
the EMCC at a frequency that is the arithmetic mean of the resonance and closest anti-resonance 
frequencies. 
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The new result obtained in this research is the fact that, for bodies of complex geometry, we have 
shown how the EMCC depends on the size and position of electrodes on the body faces. We have shown 
that the EMCC can be increased by an appropriate choice of the position and size of the electrodes. 

Note that the EMCC can be increased by changing not only the electrodes but by changing other 
parameters, such as the geometry of the body for example the EMCC of a circular plate of fixed radius 
under the action of a given load can be increased by an appropriate choice of the variable plate thickness. 
But a choice of the size and position of the electrodes is preferable since it is difficult to produce 
piezoceramic plates of variable thickness for each kind of load, whereas it is easy to deposit electrodes 
of the required shape on the plate face. 

This research was supported financially by the Russian Foundation for Basic Research (99-01-01123) 
and the International Association for Promoting Cooperation with Scientists from the Independent 
States of the Former Soviet Union (INTAS-96-2113). 
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